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Models of choice in concurrent-chains schedules are derived from melioration, generalized matching,
and optimization. The resulting models are compared with those based on Fantino's (1969, 1981)
delay-reduction hypothesis. It is found that all models involve the delay reduction factors (T - t2L)
and (T - t2R), where T is the expected time to primary reinforcement and t2L, t2R are the durations
of the terminal links. In particular, in the case of equal initial links, the model derived from melioration
coincides with Fantino's original model for full (reliable) reinforcement and with the model proposed
by Spetch and Dunn (1987) for percentage (unreliable) reinforcement. In the general case of unequal
initial links, the model derived from melioration differs from the revised model advanced by Squires
and Fantino (1971) only in the factors affecting the delay-reduction terms (T - t2L) and (T -t2R)
The models of choice obtained by minimizing the expected time to reinforcement depend on the type
of feedback functions used. In particular, if power feedback functions are used, the optimization model
coincides with that obtained from melioration.

Key words: choice, concurrent-chains schedules, delay reduction, matching, maximizing, melioration,
optimization, percentage reinforcement

Simple concurrent schedules and concur-
rent-chains schedules have been used exten-
sively in the experimental study of choice be-
havior. The major accounts of choice behavior
that have emerged from these studies suffer
from the lack of a unified basis. These accounts
appear to invoke different underlying mech-
anisms to describe choice in simple concurrent
schedules and in concurrent-chains schedules.
For choice behavior in simple concurrent
schedules, Herrnstein and Vaughan (1980)
have proposed the melioration mechanism, in
which shifts in choice are controlled by the
difference between the local rates of reinforce-
ment in the two alternatives. Matching of rel-
ative response rates to relative reinforcement
rates is obtained asymptotically as a position
of equilibrium in which the local rates of re-
inforcement are equalized. Melioration also
postulates that, if local reinforcement rates
cannot be equalized, then exclusive preference
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is obtained for the alternative with the higher
local reinforcement rate. In addition to me-
lioration, models based on optimization and
generalized matching have also been used to
describe choice in simple concurrent schedules.
For choice in concurrent-chains schedules with
variable-interval (VI) links, the most estab-
lished models are based on the delay-reduction
hypothesis advanced by Fantino (1969, 1981).
According to this hypothesis, choice is deter-
mined by the degree of reduction in time to
primary reinforcement associated with entry
into one terminal link relative to the degree of
reduction associated with entry into the other
terminal link. The model also stipulates that,
if the delay reduction for one link is negative,
then exclusive preference for the alternative
link is obtained. Vaughan (1985) has at-
tempted to bridge the gap between the two
models by proposing a unified account of choice,
based on the pairing hypothesis, from which
both melioration and a model for choice in
concurrent chains can be derived.

In this paper, an alternative approach aimed
at finding the possible connections between
models of choice in simple concurrent sched-
ules and in concurrent chains is taken. As a
first step, a number of models for choice in
concurrent-chains schedules with VI initial and
terminal links are derived analytically on the
basis of the same hypothetical mechanisms
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currently used to obtain models for choice in
simple concurrent schedules. These mecha-
nisms include melioration, generalized match-
ing, and optimization. The models of choice
in concurrent chains obtained by this process
are compared analytically and numerically with
those based on the delay-reduction hypothesis
(Fantino, 1969; Fantino & Davison, 1983;
Spetch & Dunn, 1987; Squires & Fantino,
1971), and with the model suggested by
Vaughan (1985). A particular objective is to
determine whether the delay-reduction factors
(T - t2R) and (T - t2L) that characterize the
class of models proposed by Fantino and co-
workers appear naturally in models based on
melioration, generalized matching, and molar
maximizing. Finally, the plausibility of the
derived models is assessed on the basis of the
extensive data base presented by Squires and
Fantino, Fantino and Davison, and Spetch and
Dunn. The main thrust of the study is not to
test the ultimate validity of the various hy-
pothetical mechanisms considered but rather
to explore the connections among the models
of choice in concurrent chains derived from
these mechanisms.
A review of the major existing models for

choice in concurrent-chains schedules is un-
dertaken as a preliminary step to the derivation
of new models. The discussion is limited to
concurrent chains involving independently
scheduled, concurrent VI VI initial links with-
out changeover delays and VI VI terminal links
leading to a single reinforcer at the end of each
link. A first model of choice in concurrent
chains, advanced by Autor (1960) and Herrn-
stein (1964), asserted that the relative rates of
choice responding (the number of initial-link
responses on one key divided by the total num-
ber of initial-link responses on both keys)
matches the relative rates of reinforcement (the
rate of reinforcement on one key divided by
the sum of the two rates of reinforcement) in
the two terminal links. Experiments conducted
by Fantino (1969) showed that the relative rate
of choice responding also depended on the du-
ration of the initial links, contradicting the
models of Autor and Herrnstein.
A second model that incorporates the effects

of the initial links was proposed by Fantino
(1969) for schedules with variable-interval ini-
tial and terminal links. This model is char-
acterized by the relation:

RL

RlL +
iL

RlR
(T- t2L) for t2L < T

(T -t2L) + (T- t2R) andt2R< T,

1 for t2R > T,
0 for t2L >T, 1)

where RIL and RlR represent the rates of re-
sponding during the initial links on the left
and right keys, respectively, and t2L and t2R are
the average durations of the left and right ter-
minal links. In Equation 1, T represents the
"expected time" to primary reinforcement from
the onset of the initial links and is given by

1 + tL + t2R
tlL tlR

1 1
(2)

tIL tlR

in which tIL and tlR are the average durations
of the left and right initial links, respectively.
In Fantino's initial model defined by Equa-
tions 1 and 2, as well as in the extensions
defined by Equations 3, 4, 5 and 6 below, the
durations t1L, tIR, t2L and t2R are taken to cor-
respond to the arranged or scheduled, not the
obtained, durations of the initial and terminal
links. The model characterized by Equations
1 and 2 is consistent with the data of Autor
(1960), Herrnstein (1964), and Fantino (1969)
for the case of equal initial-link schedules.

Squires and Fantino (1971) proposed an
extension of Fantino's (1969) model to include
the case of unequal initial links (i.e., tlL # t1R).
The extended model is characterized by the
equation:

RlL
RIL + RlR

LT t2) for t2L < T

JrL(T -t2L) + rR(T -t2R) and t2R < T,

1 for t2R> T,
0 for t2L> T, (3)

54



MODELS FOR CHOICE IN CONCURRENT-CHAINS SCHEDULES

where rL = 1/(tlL + t2L) and r- = 1/(tlR + t2R).
This extended model is consistent with the data
of Autor (1960) and Fantino, and with the
data of Squires and Fantino for concurrent
chains with unequal initial links and equal
terminal links. The experimental data of Fan-
tino and Davison (1983) and Squires and Fan-
tino indicate that, in conditions with unequal
initial links, Equation 3 tends to overestimate
preference for the schedule with the shorter
initial link. On the basis of these observations,
Fantino and Davison proposed a choice model
characterized by the equation

RIL
RIL + RlR

Vr (T- t2L)
V|\Y(T- t2L) + \/A(T t2R)

for t2L< Tandt2R< T,
1 for t2R> T,
0 for t2L > T, (4)

which appears to fit the experimental data bet-
ter than the models defined by Equations 2
and 3.

Finally, for concurrent-chains schedules un-
der percentage reinforcement and equal initial
links (tlL = tlR), Spetch and Dunn (1987) pro-
posed the model

RIL
RIL + RlR

(PLT -t2L)

(PLT t2L) + (PRT -t2R)

presumably for PLT> t2L and PRT > t2R. In
Equation 5, PL and PR represent the proba-
bilities of reinforcement at the end of the left
and right terminal links, respectively. The ex-

pected time to primary reinforcement from the
onset of the initial links, T, is given, in this
case, by

1+ tL + t2R
tlL tIR

T= , (6)
PL +PR
tIL tIR

which corresponds to a slight generalization of

the expression given by Spetch and Dunn for
the particular case of tlL = t1R.
An interesting characteristic of the model

given by Equation 3 is that in the limiting case
t2L = t2R = 0, which corresponds to simple
concurrent VI VI schedules, matching of re-
sponse rates to arranged rates of primary re-
inforcement is obtained. In this case,

RILL rL ,(t2LXt2R=0),
RIL+ RIR rL+ rR

(7)

where rL = 1/tIL and rR = 1/tlR are the rates
of reinforcement on the left and right keys,
respectively. Equation 7 has the same form as
the matching relation of Herrnstein (1961),
but as noted, it involves the arranged, rather
than the obtained, reinforcement rates. In many
cases, this difference is not significant. Also,
even in cases in which the arranged and ob-
tained reinforcement rates are different, the
relative response rates obtained by matching
the arranged and obtained reinforcement rates
need not be very different. In particular, for
feedback functions of the type proposed by
Staddon and Motheral (1978), matching to the
arranged reinforcement rates implies matching
to the obtained reinforcement rates.

In the limiting case of concurrent schedules
(t2L = t2R = 0), the model of Fantino and Dav-
ison (1983) given by Equation 4 leads to re-
sponse rates proportional to the square roots
of the reinforcement rates, an instance of un-
dermatching. In the same limiting case (t2L =
t2R = 0), the model of Spetch and Dunn (1987)
with tlL = tIR leads to matching of the relative
response rate to the relative probability of re-
inforcement. It should be noted, as pointed out
by Davison, that a problem arises when con-
current schedules are considered as limiting
cases of concurrent chains with t2L = t2R = 0-
The problem is that concurrent schedules usu-
ally involve changeover delays whereas con-
current chains rarely use such delays.
Vaughan (1985) presented an alternative

model for choice in concurrent chains derived
from a scheme based on the pairing hypothesis.
In one of the particular forms of this scheme,
the equilibrium state is obtained by equalizing
the values of the initial-link stimuli assumed
to be of the form
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VIL =~ V2+LP
1 + aI1t,1LP

VR = V2R 8

1 + altlR(1 P) (8)

in which p = TlL/(TIL + TIR) is the relative
time in the left initial link, a1 is a constant
with a value of the order of 0.1 per second,
and V2L, V2R are the values of the terminal-
link stimuli. These values are given in turn by

V V3L
VL-1 + a2t2L

V3R

1 + a2t2R

where V3L and V3R are the values of the pri-
mary reinforcement and a2 is a constant. For
V3L = V3R, this process leads to

Tl1L
T1L + TIR

1 _1_ A_ a,
U(R + a2t2L 1+ a2t2R) 1 + a2t2L

altl1 + 1
Lt4t + a2t2L + a2t2R/J

(10)

which corresponds to the result given by
Vaughan (1985, Appendix 4, second equation)
after correction of an obvious sign misprint.
To bring out a possible connection between

the model proposed by Vaughan (1985) and
the delay-reduction models, Equation 10 can
be rewritten, after some algebraic manipula-
tion, in the form

TIL
T1L + TIR

(i)(T t2L) + alt2R/tlL +(a/a2 1)/tlL
1L ~~~~1/tIL + 1/tlR

Ia1 + t2R/t1L + t2L/tlR
+a ,11

La2 1/tlL + 1/tIR (l l)

where T is given by Equation 2. A more de-
tailed comparison of this model with those of
Fantino and coworkers is presented later on.

In what follows, models for choice in con-
current-chains schedules are derived by as-
suming that strict or generalized time match-
ing holds when applied to the total amounts

of time (including initial and terminal links)
allocated to the left and -right alternatives.
Models of choice based on minimizing the ob-
tained expected time to reinforcement are also
derived and compared with those resulting from
matching and from the delay-reduction hy-
pothesis.

TIME-MATCHING MODELS
FOR CHOICE IN

CONCURRENT CHAINS
As a point of departure the strict time-

matching model for simple concurrent VI VI
schedules is considered. This model is a direct
result of the melioration mechanism proposed
by Herrnstein and Vaughan (1980) and is
characterized by the relation

TL TR TL +TR
rL rR rL+ rR

(12)

where TL and TR are the times spent respond-
ing on the left and right keys, respectively, and
rL and rR are the corresponding (absolute) rates
of primary reinforcement. Equation 12 can
also be written in the form

TL= TR= T' (13)
where

TL
(TL + TR)rL

TR (T +TR ) T=' L+ (14)TR(TL+TR)rR r+r

in which (TL + TR)rL and (TL + TR)rR are
the total number of reinforcements received on
the left and right alternatives, respectively. The
term TL(TR) represents the cost in local time
allocated to the left (right) alternative per re-
inforcement on that alternative. The term
TL(TR) also corresponds to the reciprocal of
the local reinforcement rate on the left (right)
alternative. The term T represents the overall
expected time to primary reinforcement.
A model for choice in concurrent-chains

schedules can be obtained by assuming that
time matching also holds when applied to the
total amounts of time allocated to the left and
right chains. Let TIL(TIR) be the total amount
of time allocated to the left (right) initial link
and T, = TIL + TIR the total amount of time
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in the initial links. In this case, the total time
in the left (right) chain is

TL = TIL + (TI/tlL)t2L,
TR = TIR + (TI/tAR)t2R, (15)

where Tj/tlL(Tl/tlR) represents the number
of entries into the left (right) terminal link and
t2L(t2R) the average duration of that link. The
total number of primary reinforcements on the
left (right) chain is

(TL + TR)rL = (Tl/tlL)PL,
(TL + TR)rR = (TI/tlR)PR, (16)

where Tj/tlL(Tj/tlR) represents the number
of entries into the left (right) terminal link and
PL(PR) is the probability of receiving reinforce-
ment at the end of that link.

Substitution from Equations 15 and 16 into
Equation 14 leads to

A t1L(T1L/Tj) + t2L
TL= PL (17a)

, t1R(T1R/TI) + t2R

TR= PR (17b)

I +(t. /L) + OM/, R)T= (17c)
(PL/tlL) + (PR/tlR) -

where the expected time to primary reinforce-
ment T, given by Equation 17c, coincides in
form with that given by Equation 6. For the
particular case PL = PR = 1.0, T given by
Equation 17c also coincides in form with T
given by Equation 2. It must be noted, how-
ever, that in the present derivation, the times
t1L, t1R, t2L, and t2R correspond to the obtained
durations of the various links.

Finally, from Equations 13 and 17 it is found
that

TIL = (PLT - t2L)/tIL,TIL + TlR

= (PRT - t2R)/tIR, (18)T'IL + TlR
or, equivalently,

TIL

T17L + TlR

(1/tIL)(PLT -t2L)

(1/tIL)(PLT -t2L) + (l/t1R)(PRT -t2R)
(19)

in which the denominator on the right-hand
side of Equation 19 can be shown to be equal
to unity. An alternative derivation of Equation
18 for the case PL = PR = 1.0 is presented in
Appendix 1.
The relative allocation of time in the initial

links given by Equations 18 or 19 would hold
for situations in which t2L < PLT and t2R <
PRT. If these conditions are violated, time
matching in the sense of Equation 13 cannot
be achieved for any distribution of time in the
initial links. In this case, the costs in local time
per reinforcement TL and TR cannot be equal-
ized. Extending the melioration mechanisms
of choice advanced by Herrnstein and Vaughan
(1980) for simple concurrent schedules, it is
postulated that the organism will respond ex-
clusively to the alternative leading to the lower
value of TL or TR. For t2L > PLT, exclusive
preference for the right chain would be ob-
tained while for t2R > PRT, exclusive prefer-
ence for the left chain would be obtained.

In summary, the relative allocation of time
in the initial links would be given by

TlL
TIL + TlR

l( (1/tlL)(PLT -t2L)
(l/tlL)(PLT - t2L) + (l/tlR)(PRT -t2R)

= for t2L <PLT and t2R < PRT,
|1 for t2R > PRT,
0 for t2L > PLT. (20)

If the local rates of responding in the initial
links are equal, then the relative rate of re-
sponding in the initial links would also be
given by Equation 20.
The melioration process for the case PL =

PR = 1.0 is illustrated in Figure 1. The vari-
ations of the time costs per reinforcement TL
and TR as a function of the relative allocation
of time in the initial link TlL/(TIL + TIR) are
shown in Figure 1 for two typical cases. An
increase in the relative allocation of time to
the left initial link increases the local time cost
TL on the left chain,.decreases the correspond-
ing local time cost TR on the right chain, and
leaves the overall average time to reinforce-
ment T essentially unchanged. If t2L < T (or,
equivalently, t2L < tIR + t2R) and t2R < T (or,
equivalently, t2R < tIL + t2L) as shown in Fig-
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tlR+t2RI

t2L

tlR+tZR

't2L

t2L

t2R

tlL+t2L

0.00 0.25 0.50 0.75 1.00

TIL/ (TIL+ TIR) TIL/ (TIL+ TIR)

Fig. 1. Variation of local times to reinforcement TL and TR with relative allocation of time in the initial links. An
increase in allocation of time to the left increases TL, reduces TR, and leaves T, the total expected time to reinforcement,
essentially unchanged. (a) If t2L < T and t2R < T, a position of equilibrium is reached in which TL = TR = T. (b) If
t2R > T or t2L > T, the local times to reinforcement TL and TR cannot be equalized.

ure 1 a, a relative allocation of time exists for
which TL = TR = T. The relative allocation
of time at that point is given by Equation 19.
If t2R > T (or, equivalently' if t2R > tlL + t2L),
the local time costs TL and TR cannot be equal-
ized and the minimum time cost per reinforce-
ment would be obtained by exclusive respond-
ing on the left chain, as shown in Figure lb.

It is interesting to compare Equation 20
resulting from a melioration model with Equa-
tions 1, 3, 4, and 5 based on the time-delay
model. In the first place, if the initial links
have equal durations (tlL = t1R) and PL = PR
= 1.0, then Equation 20 coincides with Equa-
tion 1, Fantino's (1969) original representa-
tion of the time-delay model. Second, if the
durations of the terminal links are much shorter
than the durations of the initial links (t2L <
tIL, t2R tIR), then tlL + t2L t tiL, tIR + t2R

tlR and, consequently, Equation 20 (for PL
= PR = 1.0) gives results similar to those from
Equation 3. In particular, in the limiting case
t2L = t2R = 0, both Equations 3 and 20 reduce
to Herrnstein's (1961) matching law for sim-
ple concurrent schedules. Third, for PL = PR
= 1.0, Equation 20 and Equations 1, 3, and
4 have the same limiting conditions for exclu-
sive preference for one of the chains. Perhaps

the most important similarity between the
equations based on the delay-reduction model
and those based on time matching is that the
terms (T -t2L) and (T -t2R) appear in both.
Because these terms embody Fantino's delay-
reduction hypothesis, it is possible that the time-
matching and the delay-reduction models have
a common underpinning. Finally, in the case

of equal initial links (tlL = tIR) and percentage
reinforcement, Equation 20 coincides with
Equation 5 obtained by Spetch and Dunn
(1987).

It could be argued that the similarities be-
tween the model based on melioration and the
class of models based on Fantino's delay-re-
duction hypothesis pertain only to the formal
appearance of these models. In the application
of the delay-reduction models, it is customary
to use the scheduled values for the durations
t1L, t1R, t2L, and t2R, whereas the model based
on melioration involves the obtained values for
these durations. This difference may be less
significant than it appears. In many cases, the
local rates of responding are sufficiently high
so that differences between scheduled and ob-
tained durations are small. Second, even when
differences exist between the scheduled and
obtained durations, this does not imply that

I I I

A t2R >T

TR
(b)

AVTL

I I



MODELS FOR CHOICE IN CONCURRENT-CHAINS SCHEDULES

the predictions for choice based on the sched-
uled and obtained durations will be signifi-
cantly different. In particular, it can be shown
(Appendix 2) that under the following as-
sumptions-(a) equal local rates of responding
in initial links, (b) high rates of responding in
terminal links, (c) feedback functions in the
initial links of the type proposed by Staddon
and Motheral (1978, 1979), and (d) equal
probability of reinforcement at the end of the
initial links (PL = PR)-the predictions for
choice based on Equation 20 are the same re-
gardless of whether the scheduled or obtained
values for the link durations are used.

Finally, it is necessary to compare the model
of choice in concurrent chains given by Equa-
tions 19 or 20 with the model proposed by
Vaughan (1985) and given by Equations 10
or 11. First, in the case of equal terminal links
(t2L = t2R), both Equations 11 and 19 lead to
the same choice proportion corresponding to
t1R/(tlL + tlR). Second, Equation 11 reduces
to Equation 19 when a, = a2 and a1 tends to
zero. However, for the value of a,1 0.1 per
second recommended by Vaughan (1985), the
second term in the numerator of Equation 11
is not negligible and both formulae give, in
general, different results. For instance, for tIL
= tlR = 180s, t2L = 5 s, and t2R = 55 s, Equation
11 gives a choice proportion of .85 and Equa-
tion 19 gives .64.

It is of interest to compare the predictions
of Equation 4 (Fantino & Davison, 1983),
Equation 11 (Vaughan, 1985), and Equation
20 (present work) with the data obtained by
Fantino and Davison (1983) and Squires and
Fantino (1971). To conduct the comparisons
two assumptions had to be made. First, be-
cause the obtained durations were not re-
ported, all predictions were calculated by using
the scheduled values. Second, the reported data
include only the relative response rates in the
initial links. Because Equations 11 and 20 pre-
dict the relative allocation of time in the initial
links, it was necessary to assume that the local
rates of responding in the initial links were
equal. In this case, the relative response rate
and the relative allocation of time are equal.
The resulting comparisons are listed in Tables
1 and 2. The tables do not include the exclusive
preference cases in which the predictions of
Equations 4 and 20 coincide. The experimen-
tal data for the cases tIL = tlR (Table 1) are
such that t2L < tIL and t2R < t1R. Under these

t-0.6-
+ 4

0.2
0.0

0 15 30 45 60 75

tIL (sec)
Fig. 2. Comparison of the predictions for the relative

response rates in the initial links of concurrent-chains
schedules characterized by tIR = 180 s, t2R = 20 s, t2L =
40 s, and tIL is variable in the range from 0 to 75 s. The
data of Fantino and Davison (1983) are also shown.

conditions Equations 4 and 20 predict similar
choices. In these cases, Equation 4 gives a
slightly better fit to the data than Equations
11 or 20. For cases in which t2L = t2R, Equa-
tions 11 and 20 lead to identical results that
overestimate the relative rate of responding for
the preferred alternative (Tables 1 and 2).
The most significant differences between the

predictions of Equations 4, 11, and 20 occur
for the experimental Conditions 45, 42, 38,
and 40 of Fantino and Davison (1983) in which
tlR = 180 s, t2L = 40 s, t2R = 20 s, and tIL =
0, 15, 30, and 60 s, respectively. In these cases,
as shown in Table 1 and Figure 2, Equation
4 leads to preference for the right initial link
in agreement with the data, and Equations 11
and 20 Jead to preference for the left link. In
particular, in the limiting case tlL = 0, tlR =
180 s, t2L = 40 s, and t2R = 20 s, Equation 4
predicts RIL/RI = 0 (i.e., exclusive preference
for the right chain) and Equations 11 and 20
lead to TIL/Tl = .96 and .89, respectively. As
shown in Table 1, the obtained choice pro-
portion was .09. These critical experimental
conditions corresponding to Cases 45, 42, 38,
and 40 of Fantino and Davison (1983) seem
to indicate that Equation 11, based on the
equalization of value proposed by Vaughan
(1985), and Equation 20, derived here on the
basis of the melioration mechanism, may not

59



J. ENRIQUE LUCO

Table 1

Comparison of the predictions of Equations 4, 11, 20, and 26 with the group data of Fantino
and Davison (1983). The obtained group data in the left column correspond to the schedule
(tIL, tIR, t2L, t2R) listed. The data in the right column correspond to the results when the conditions
on the left and right chains are reversed.

Obtained Predicted choice proportion
Condition tIL tIR t2L t2R group choice Eq. 26

(s) proportion Eq. 4 Eq. 11 Eq. 20 n = .5

24-23 180 180 5 55 .68-.63 .67 .85 .64 .64
28-27 180 180 10 50 .66-.64 .63 .78 .61 .61
26-25 180 180 20 40 .55-.63 .57 .64 .55 .55
33-32 120 120 20 40 .56-.63 .60 .65 .58 .55
34 60 60 5 15 .66 .60 .67 .58 .58
35 60 60 5 30 .79 .74 .80 .71 .71
36 60 60 5 40 .80 .82 .86 .79 .79
3-4 60 60 5 55 .96-.94 .94 .92 .92 .92
7-8 60 60 10 50 .88-.89 .86 .83 .83 .83
1-2 60 60 15 45 .86-.85 .78 .75 .75 .75
5-6 60 60 20 40 .71-73 .70 .67 .67 .67

31-30 30 30 20 40 .73-.83 .86 .71 .83 .83
51-52 15 180 20 20 .57-.69 .70 .92 .92 .56
48-49 30 180 20 20 .52-.66 .67 .86 .86 .60
46-47 60 180 20 20 .49-.64 .61 .75 .75 .58
53-54 15 45 20 20 .46-.58 .58 .75 .75 .43
45 0 180 40 20 .09 .00 .96 .89 .00
42 15 180 40 20 .30 .42 .85 .82 .26
38 30 180 40 20 .34 .48 .75 .76 .40
40 60 180 40 20 .41 .48 .62 .67 .46
37 180 60 40 20 .35 .27 .15 .17 .35
39 180 30 40 20 .28 .12 .07 .05 .33
41 180 15 40 20 .17 .00 .03 .00 .35
43 45 15 40 20 .18 .00 .09 .00 .29
44 15 45 40 20 .10 .21 .55 .42 .00

be suitable models
chains.

for choice in concurrent

TIL _T1L

aL IPLtlRI + t2R _

aR \pRtL/ tIR/

A MODEL OF CHOICE
BASED ON GENERALIZED

TIME MATCHING
The relative failure of the strict time-match-

ing model, as given by Equation 20, to fit the
experimental data suggests the possibility of
considering the generalized time-matching
model (Baum, 1974) characterized by

TL/TR = (aL/aR)(rL/rR)nX (21)
in which n is the sensitivity and (aL/aR) is a
measure of bias written in this form to preserve
the symmetry of the formulae. Substitution
from Equations 15 and 16 into Equation 21
leads to

+ aL (PLtlR)
aR \PRtIL/

which can also be written in the form

T1 tlL ( LLT t2L)
where T is given by Equation 17c,

(PL/tL) + PR1R) tIL(-n
bL = aLaL(PL/tL) + aR(PR/t,R) Vtl/

and

l = aL(PL/tIL) + aR(pR/tlR)n
aL(PL/tlL) + aR(PR/tlR)

t2L
tlL

(22)

(23)

(24)

(25)
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10 20 i3 40 0 10 20 30 40

12L-t2R (sec) t2L d2R (sec)

Fig. 3. Comparison of the predictions of Equation 26 for n = .50, .75, and 1.0 with the data of Spetch and Dunn

(1987) for choice under percentage reinforcement conditions (PL = 1.0, PR~= .33) in concurrent-chains schedules

characterized by tIL = tIR = 90 s and t2L = t2R variable in the range from 0 to 40 s. Figure 3a presents the relative

allocation of time T1L/(T1L + T1R) and Figure 3b the relative response rate R1L/(R1L + R1R)-

The condition for exclusive preference for the
right chain would be given by

n 1-n

t2L > ) ( (tlR + t2R)

aR R/t1R

(or, equivalently, t2L> bLpniT).

Finally, to compare with other formula-
tions, the relative allocation of time in the ini-
tial links under the assumption of generalized
time matching is written in the form:

TIL

T1

[bLpT - t2L]
tlL

t
1[IL Lp

L
- t2L] +I-[Rp R

- t2R]

for t2L < bLP LT and t2R < bRPRT,
1 for t2R < bRPRT,
0 for t2L < bLPLT, (26)

Table 2

Comparison of the predictions of Equations 4, 20, and 26 for n = .5 and n = .75 with the group
data of Squires and Fantino (1971). The obtained group data in the left column corrcspond to
the schedule (tIL, tIR, t2L, t2R) listed. The right column lists the data when the conditions on the
left and right chains are reversed.

Predicted choice proportion
Obtained Eq. 26

tIL tIR t2L t2R group choice
(s) proportion Eq. 4 Eq. 20 n = .75 n =.5

60 600 60 60 .78-.83 .70 .91 .78 .60
60 300 60 60 .51-.75 .63 .83 .69 .52
60 120 60 60 .55-68 .55 .67 .57 .46
30 60 60 60 .47-.63 .54 .67 .51 .34
60 600 15 15 .77 .74 .91 .83 .72
60 300 15 15 .66-.71 .67 .83 .75 .65
60 120 15 15 .58 .57 .67 .61 .56
30 60 15 15 .61-62 .56 .67 .60 .53

= I
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in which the denominator on the right-hand
side of Equation 26 can be shown to be equal
to one. Again, if the local rates of responding'
in the initial links are equal, then Equation
26 also gives the relative rate of responding in
the initial links. For n = 1 and aL = aR = 1.0
(no bias), Equation 26 reduces to Equation
20.
The predictions from Equation 26, under

the assumption of equal local rates of respond-
ing in the initial links, for PL = PR = 1.0 and
aL/aR = 1.0 (no bias), are compared with data
in Tables 1 and 2 and in Figures 2, 3a, and
3b. The comparisons listed in Table 1 indicate
that the results of Equation 26, with n = .5
and aL/aR = 1.0, fit the data of Fantino and
Davison (1983) reasonably well. For tlL = tlR,
the predictions of Equation 26 differ by less
than .03 of relative response from the predic-
tions of Equation 4. For tlL # tlR, it appears
that Equation 26 fits the data slightly better
than Equation 4. In particular, for the critical
conditions 38, 40, 42, and 45 in which tlL =
0, 15, 30, and 60 s, respectively, and tlR = 180
s, t2L = 40 s, and t2R = 20 s, Equation 26 with
n = .5 predicts preference for the right alter-
native in agreement with the data (Figure 2).
The comparisons with the data of Squires

and Fantino (1971) listed in Table 2 indicate
that for t2L = t2R = 60 s the best fit would be
obtained for n ; .80, whereas for t2L = t2R =
15 s the best fit would occur for n ; .60.
Although the data show a significant amount
of bias for the right key, no attempt was made
at estimating the value of the bias parameter
(aL/aR) that would give the best fit.

Comparisons of the results of Equation 26
with the data of Spetch and Dunn (1987) for
the case of percentage reinforcement are shown
in Figures 3a and 3b. The predictions of Equa-
tion 26 for n = .5, .75, and 1.0 (aL/aR = 1 .0)
are compared in Figure 3a with the observed,
relative allocation of time in the initial links.
The cases considered correspond to tlL = tlR
= 90 S, PL = 1.0, PR = .33, and to values of
t2L = t2R in the range from 1 to 40 s. It appears
that the best fit to the data is obtained for n
; .75. The predicted relative allocation of re-
sponses, assumed to be equal to the relative
allocation of time given by Equation 26, is
compared in Figure 3b with the observed, rel-
ative response rate in the left initial link. In
this case, Equation 26 with n = 1.0, which
corresponds to the model advanced by Spetch

and Dunn (1987), appears to agree more closely
with the data.

CHOICE IN CONCURRENT
CHAINS AND OPTIMIZATION

To study whether choice in concurrent chains
is determined by an optimization criterion, it
is necessary to consider the effects of the al-
location of time on the average duration of the
different components of the VI schedules. In
particular, it is assumed that the obtained du-
rations tIL and tIR of the initial links are given
by feedback functions

tlL tlL(tlL, P),

tlR = tlR(tlR*, 1 - p),
where t1L* and tlR* are the scheduled dura-
tions and p = TIL/TI is the relative allocation
of time on the left initial link. It is assumed
that the response rates in the terminal links
are sufficiently high so that the obtained (t2L,
t2R) and scheduled (t2L*, t2R*) durations of the
terminal links are equal, that is,

t2L = t2L*, t2R = t2R . (28)
The obtained average expected time to re-

inforcement T, given by Equation 6, is a func-
tion of the allocation of time p. The derivative
of T with respect to the relative allocation of
time p is given by

(PL/tlL + PR/tAR) dT

= - t2L)d(dz)

- (PRT t2R)d(l - p (29)

For most feedback functions, the derivatives
d(tlL-')/dp and d(tlR-1)/d(1 - p) have positive
values. If t2L > PLT (which implies PRT> t2R)
then dT/dp > 0, indicating that T is an in-
creasing function of p. In this case, the mini-
mum value of T is obtained by exclusive pref-
erence for the right chain (p = 0). Conversely,
if t2R > PRT (which implies PLT > t2L) then
dT/dp < 0, indicating that T is a decreasing
function of p. The minimum value of T is
obtained, in this case, by exclusive preference
for the left chain (p = 1). It is apparent that
optimization leads to the same conditions for
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exclusive preference associated with the delay-
reduction and melioration models.

If t2L < PLT and t2R < PRT, there is a
nonexclusive allocation of time p that mini-
mizes T. This allocation is defined by the con-
dition dT/dp = 0, or

(PLT - t2L)d (tILj1)

= (PRT - t2R)d( ) (tlR)). (30)

The resulting allocation depends on the form
of the feedback functions.

For the power feedback functions proposed
by Rachlin (1978)

1 _1 1 1
pm - = - (1 -p)m) (31)

tIL tL tlR tIR
the relative allocation of time p which satisfies
Equation 30 is such that

T1L P
=
(PLT -t2L)/tlL

TlR 1 -P (PRT -t2R)/tlR
(32)

which is equivalent to Equation 20. Thus, if
the feedback functions are power functions,
optimization and strict time matching lead to
the same result corresponding to Equation 20.

For feedback functions of the type consid-
ered by Staddon and Motheral (1978, 1979)

tlL = t1L + (R1p)-1,
t1R = t1R + [Rj(1 - p)]', (33)

where R1 is the total response rate in the initial
links, the allocation of time that minimizes T
is given by

TlL P

TIR 1-P
(l/tlL)VPLT- t2L

(1/tlR)VPRT- t2R

which involves the square root of the delay-
reduction factors (PLT -t2L) and (PRT -t2R)-

Comparison of the choice predicted by
Equation 34 with data indicates that Equation
34 underpredicts choice for the preferred al-
ternative when tlL = tIR and overpredicts choice
for the preferred alternative when t2L = t2R

When both the initial and terminal links are

different, the predictions of Equation 34 are
in disagreement with the data. In particular,
the predictions of Equation 34 do not match

40I

0 0.2 0.4 0.6 0.8 1.0

TIL/ (TIL +TIR)
Fig. 4. Variation of the obtained expected time to re-

inforcement T with allocation of time in the initial links
of concurrent chains characterized by tIL* = tIR* = 15 s
and three combinations of t2R and t2L. The calculations are
based on the feedback functions given by Equation 33 for
R= RIL + RIR = 1 response/s.

the data for the critical conditions shown in
Figure 2.
The variation of T with p = TIL/TI for the

feedback functions given by Equation 33 is
illustrated in Figure 4 for PL = PR = 1.0, R1
= 1 response/s, tIL* = t1R* = 15 s, and for
three combinations of the terminal link du-
rations t2L* and t2R*. The first combination
corresponds to t2L* = t2R* = 30 s. In this case,
the scheduled value of T is T* = 37.5 s and
t2L* = t2R* < T*. In this case, the obtained
value of T shown in Figure 4 remains essen-
tially constant for values ofp in the range from
.2 to .8. In this range, T deviates less than 0.5
s from the minimum value of 38.5 s that occurs
for p = .5. For the second combination cor-
responding to t2L* = 22.5 s and t2R* = 37.5 s,
the obtained value of T changes by less than
0.33 s for values of p in the range from .5 to
1.0. The minimum value of T is reached for



J. ENRIQUE LUCO

p z .87. We note that this case corresponds
to the limit situation T* = t2R* = 37.5 s in
which Equations 3 and 4 would predict ex-

clusive preference for the left chain (i.e., T1L/
T, = 1.0). The third case shown in Figure 4
corresponds to t2L* = 5 s and t2R = 55 s. In
this case, T* < t2R* and Equations 1, 3, 4,
and 14 would predict exclusive preference for
the left chain (i.e., TIL/Ti = 1.0). The results
shown in Figure 4 for this last case reveal that
the expected time to primary reinforcement T
has a pronounced minimum for TIL/TI = 1.0,
in contrast to the behavior described for the
two previous cases.

The results described above indicate that for
T*>2 t2R* and T* > t2L*, the objective function
T remains essentially constant over wide ranges
of the relative rates of choice responding and
consequently provides a very poor discrimi-
nant for optimal choice. The small variations
of the expected time to primary reinforcement
T are completely overshadowed by the changes
from trial to trial resulting from variability of
the schedules.

CONCLUSIONS
A number of models for choice in the initial

links of concurrent-chains schedules with vari-
able-interval initial and terminal links have
been derived on the basis of the melioration,
generalized matching, and optimization mech-
anisms. The models based on melioration and
optimization exhibit the same delay-reduction
factors (T - t2L) and (T - t2R) that charac-
terize the class of delay-reduction models pro-
posed by Fantino and coworkers (Fantino,
1969; Fantino & Davison, 1983; Spetch &
Dunn, 1987; Squires & Fantino, 1971). It has
also been shown that the melioration and op-
timization models lead to the same limiting
conditions for exclusive preference for one of
the initial links and that these conditions co-

incide with those associated with the delay-
reduction models. Furthermore, for schedules
with equal initial links, the model for the rel-
ative allocation of time in the initial links de-
rived here from the melioration mechanism
coincides in form with the initial model for the
relative allocation of responses proposed by
Fantino (1969) for the case of full reinforce-
ment and with the extension of Spetch and
Dunn (1987) for the case of percentage rein-
forcement. In the general case, the model de-

rived from melioration differs from the exten-
sions of the delay-reduction model advanced
by Squires and Fantino (1971) and Fantino
and Davison (1983) only on the factors af-
fecting the terms (T -t2L) and (T -t2R). The
new model involves the factors (1/tAL) and
(O/tlR), whereas the models of Squires and
Fantino (1971) and Fantino and Davison
(1983) involve the empirically found factors
1/(tlL + t2L), 1/(tlR + t2R), and 1/tiL + t2L,
1/ tIR + t2R, respectively.
The natural appearance of the terms (T -

t2L) and (T -t2R) in models for choice derived
from melioration and optimization schemes
lends additional support to the delay-reduction
model. The derivations, however, reveal one
apparent difference between these models. The
melioration and optimization models involve
the obtained durations of the initial and ter-
minal VI links, whereas the delay-reduction
models are stated customarily in terms of the
arranged or scheduled durations of these links.
This difference may not be necessarily signif-
icant. In fact, it can be shown (Appendix 2)
that, under a set of plausible assumptions, the
predictions for the relative allocation of time
in the initial links resulting from the meliora-
tion model (for the case PL = PR) are the same
regardless of whether scheduled or obtained
values for the link durations are used.
The model for choice in concurrent-chains

schedules derived in the present study by use
of the melioration mechanism differs, in gen-
eral, from the model proposed by Vaughan
(1985). In the case of equal terminal links (t2L
= t2R), however, both models give the same
prediction for the relative allocation of time in
the initial links.

As stated above, it has been shown that mo-
lar optimization in the form of minimization
of the overall expected time to reinforcement
leads to models of choice involving the delay-
reduction factors (T -t2L) and (T -t2R). The
particular dependence of the predicted relative
allocation of time on the delay-reduction fac-
tors depends, however, on the form assumed
for the feedback functions. For power feedback
functions of the type proposed by Rachlin
(1978), the model resulting from optimization
coincides with that derived on the basis of me-
lioration. For feedback functions of the type
proposed by Staddon and Motheral (1978,
1979), the predicted choice depends on the
square roots of the delay-reduction factors.
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A third class of models of choice in concur-
rent chains was derived by assuming that the
allocation of time to each alternative (including
initial and terminal links) was proportional to
some power of the rate of primary reinforce-
ment on that alternative. This generalized
matching model reduces to the melioration
model when the sensitivity (i.e., the power) is
set to one. In the limiting case of zero duration
for the terminal links corresponding to simple
concurrent schedules, this model leads to gen-
eralized matching of time allocation to rein-
forcement rates, whereas the model derived
from melioration and the two models derived
from optimization lead to strict (or linear)
matching.

All of the models for choice derived from
melioration, optimization, and generalized
matching were assessed by comparison with
the data obtained by Squires and Fantino
(1971), Fantino and Davison (1983), and
Spetch and Dunn (1987). Two assumptions
had to be introduced to conduct the compari-
sons: (a) Because the obtained durations of the
various links were not reported, it was nec-
essary to use the scheduled durations, and (b)
because the models predict the relative allo-
cation of time and the data of Squires and
Fantino (1971) and Fantino and Davison
(1983) involve the relative response rates, it
was necessary to assume that the predicted
relative response rates were equal to the rel-
ative allocations of time in the initial links.
Some support for the second assumption, albeit
for more complex concurrent-chains sched-
ules, can be found in the work of Davison
(1983).
The predictions from the melioration model,

which are identical to those for the optimi-
zation model based on power feedback func-
tions, agreed closely with the data for cases in
which tlL = tlR, overestimated choice for the
preferred alternative in cases in which t2L =
t2R, and failed to predict the correct preference
in a number of cases in which tlL # tIR and
t2L * t2R. In particular, for a critical set of
experimental cases considered by Fantino and
Davison (1983) in which tIR = 180 s, t2R = 20
s, t2L = 40 s, and tIL = 0, 15, 30, and 60 s,
respectively, the melioration model predicts
preference for the left alternative although the
data show preference for the right chain. The
model for choice in concurrent chains proposed

by Vaughan (1985) also appears to fail in these
critical cases.
The model for choice derived from opti-

mization and based on feedback functions of
the type proposed by Staddon and Motheral
(1978, 1979) underestimated choice for the
preferred alternative when tlL = t1R, overes-
timated choice for the preferred alternative
when t2L = t2R, and failed to predict the sense
of preference in the critical cases identified
above.
The model for choice based on generalized

matching appears to fit all of the data almost
as well as the delay-reduction model proposed
by Fantino and Davison (1983). Depending
on the data set, the best fit to the data is ob-
tained for values of the sensitivity parameter
ranging from .50 to 1.0. Of all the models
considered, only the model proposed by Fan-
tino and Davison and the model derived from
generalized matching appear to satisfy all of
the experimental data. Because a number of
assumptions had to be made to conduct the
comparisons, this conclusion is only tentative.
It would be of interest to repeat these com-
parisons with relative time-allocation data us-
ing obtained durations for the various VI links.
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APPENDIX 1

The basic assumption that the ratio of total local times spent on each alternative
(including initial and terminal links) will match the corresponding ratio of primary
reinforcements is expressed, in the case of full reinforcement (PL = PR = 1), by

TIL + (Tj/tlL)t2L (TI1/t1L) (A1 1)
TlR + (TI/tlR)t2R (T1/tlR)

Substitution of TIR by T1 - TlL in Equation Al.1 leads, after some algebraic
manipulation, to

TlL _ tIR + t2R t2L (Al.2)
Tl tlL + tlR

which gives the relative allocation of time in the initial links in terms of the
durations of the initial and terminal links. Equation Al.2 is equivalent to Equation
18 for PL = PR = 1. This is shown by the following algebraic transformations:

tlR + t2R - t2L _(1/tlL)(1 + t2R/tlR - t2L/tlR)

tlL + tlR (1/tlR + O/tIL)

(1/t1L)[(1 + t2R/tAR + t2L/tlL) - t2L(l/tlR + O/tlL)]

(1/tlR + OMtl)

= (T - t2L). (A1.3)
tIL

APPENDIX 2
Let tlL*, tlR, t2L* and t2R* be the scheduled values for the link durations and

t1L, t1R, t2L, and t2R be the corresponding obtained values. It is assumed that the
obtained durations of the initial links are connected with the scheduled values
and the distribution of responses through feedback functions of the type proposed
by Staddon and Motheral (1978, 1979). In particular, the feedback functions
given by Equation 33 are used in which R1 is the total response rate in the initial
links and p = TIL/T is the relative allocation of time on the left initial link.
Equation 33 is based on the assumption that the local rates of responding on both
initial links are equal to R1. In addition, it is assumed that the rate of responding
in the terminal links is sufficiently high so that the obtained and scheduled
durations of the terminal links are approximately equal (Equation 28).



MODELS FOR CHOICE IN CONCURRENT-CHAINS SCHEDULES

Substitution from Equations 28 and 33 into Equations 17a and 17b leads to

TL = [tlL*p + t2L + Rl1<]/PL (A2.1)
TR [tlR*(1 - P) + t2R* + R1 1]/PR. (A2.2)

Equating the costs in local time for reinforcement as in Equation 13 leads to

- PL(tlR + t2R*) - PRt2L*
tlL*tlR*(PL/tlL + PR/tlR*)
+

(PL PR)
(23

(PRRltlL* + PLRItlR*) (A2.3)
which can also be written in the form

(PLT*- t2L*) (PL - PR)
t1 + (PRR1t1L + PLR1tIR) (A2.4)

where T* given by
1 + (t2L*/tlL*) + (t2R*/tlR*) (A2.5)

PL/tlL* + PR/tlR*
is the average scheduled time to reinforcement.

If PL = PR, then the last term in Equation A2.4 vanishes and the choice
proportion is given by

P = (PLT - t2L*)/tlL* (A.2.6)
which has the same form as Equation 18 but involves the scheduled durations of
the various links. In this case (PL = PR), the same choice prediction is obtained
regardless of whether the scheduled or the obtained link durations are used.

IfPL $ PR, then the use in Equation 20 of the scheduled values for the durations
instead of the obtained values leads to a very slight bias for the alternative with
the lowest probability of reinforcement at the end of the terminal link. For PL =
1.0, PR = .33, t1L* = t1R* = 30 s and R1 = 1.0 response/s, the error in choice
allocation is Ap = .017.
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